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Abstract
Introducing the associated hypergeometric functions in terms of two non-
negative integers, we factorize their corresponding differential equation into
a product of first-order differential operators by four different ways as shape
invariance equations. These shape invariances are realized by four different
types of raising and lowering operators. This procedure gives four different
pairs of recursion relations on the associated hypergeometric functions.

PACS numbers: 02.30.Hq, 02.30.Gp, 12.39.St

1. Introduction

Hypergeometric series and functions play an important role in a wide variety of problems
in physics, applied mathematics, engineering and statistics [1–7]. The significance of the
hypergeometric differential equations is the fact that every ordinary second-order differential
equation with at most three regular singular points can be converted to a hypergeometric
differential equation. Another aspect of the mentioned fact is that most of the associated special
functions are transformed to the hypergeometric functions by choosing special values for their
parameters, appropriate change of variable or suitable change of function. Hypergeometric
polynomials are involved in the classical eigenfunctions of singular Sturm–Liouville equations
[8–13]. The wavefunctions of quantum mechanics and the correlation functions of some
integrable systems are described in terms of the hypergeometric functions [12, 14–21].
Moreover, the hypergeometric functions are used in constructing mathematical models for
a large number of physical and chemical phenomena [10, 12, 22–24]. On the other hand,
the factorization method has been known as a powerful technique for solving second-order
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differential equations—in connection with the physical models with orthogonal bases—by
means of the raising and lowering operators. The factorization method was first introduced by
Darboux [25] and then it was used by Schrödinger [26, 27] for obtaining the solutions of the
differential equations. In [27], Schrödinger has suggested four kinds of special factorizations
for factorizing the ordinary hypergeometric differential equation. Infeld and Hull [28] extended
the method for obtaining the analytic solutions of a certain class of non-relativistic second-
order Hamiltonians by means of the creation and annihilation operators. Meanwhile as a new
research, a general linearization formula has been found for a product of the hypergeometric
polynomials [29]. In [30], Laha et al have introduced two special first-order differential
operators for generating recursion relations on the hypergeometric functions. These operators
also generate the equations derived from the action of the supersymmetry generators on the
positive energy solution of the Coulomb field in addition to factorizing the associated second-
order differential operator. Their results on the confluent hypergeometric functions lead to
derivation of the ladder operators corresponding to the Coulomb–Green wavefunction with
boundary condition.

On the basis of the factorization of the associated hypergeometric functions differential
equation with respect to two indices, i.e. (a) n, degree of the hypergeometric polynomials
(b) m, dependence index for the associated hypergeometric functions, Cotfas [16] has
mentioned new ladder operators which increase or decrease the indices n and m by one
unit simultaneously. The explicit differential forms of the operators have not been deduced. In
fact in this paper, we complete the discussions presented in [16]. In this paper we introduce the
associated hypergeometric functions in terms of indices n and m so that their corresponding
differential equation is factorized into a product of first-order differential operators in four
different ways as shape invariance equations for the indices (n,m) and (n − 1,m), (n,m) and
(n,m−1), (n,m−1) and (n−1,m) as well as (n,m) and (n−1,m−1). The shape invariance
relations (in which the values of n and m do not change) are realized by the ladder operators
shifting only n, shifting only m, shifting indices n and m simultaneously and inversely and
shifting indices n and m simultaneously and agreeably (in which both indices are lowered
or both indices are raised), respectively. Meanwhile for every shape invariance, a pair of
recursion relations on the associated hypergeometric functions is derived.

2. Shape invariance equations with respect to n and m

Let us first consider a second-order linear differential operator for given real parameters
α, β > −1 and ω > 0 as

L(α,β)(x) := x−α(1 − ωx)−β d

dx

(
xα+1(1 − ωx)β+1 d

dx

)
. (1)

Lemma 1. L(α,β)(x) has the following properties:

(a) It is a Hermitian operator with respect to an inner product with the weight function
W(x) = xα(1 − ωx)β in the interval x ∈ (

0, 1
ω

)
.

(b) The action of the operator L(α,β)(x) on an arbitrary polynomial is such that the degree of
the polynomial is not increased.

(c) If we show the eigenfunctions of the operator L(α,β)(x) with F
(α,β)
n (x) as a polynomial

exactly of degree n, then we can conclude its eigenvalue equation as follows:

x(1 − ωx)F ′′(α,β)
n (x) + [α + 1 − (α + β + 2)ωx]F ′(α,β)

n (x)

+ nω(α + β + n + 1)F (α,β)
n (x) = 0. (2)
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Proof. The proof is straightforward. �

Equation (2) is known as the differential equation of hypergeometric polynomials, and it is
also obtained from the general form of hypergeometric differential equation

y(1 − y) 2F̈ 1(a, b; c; y) + [c − (a + b + 1)y] 2Ḟ 1(a, b; c; y) − ab 2F1(a, b; c; y) = 0

0 < y < 1 (3)

by choosing the following special values:

a = −n b = α + β + n + 1 c = α + 1 y = ωx. (4)

The symbols of prime and dot denote the differentiation with respect to x and y, respectively.
Differential equation (3) is the prototype of the Fuchsian equation with three regular
singularities, namely 0, 1 and ∞. The hypergeometric function 2F1(a, b; c; y) has the
following known expansion:

2F1(a, b; c; y) =
∞∑

k=0

(a)k(b)k

(c)k

yk

k!
(a)k = a(a + 1) · · · (a + k − 1) (5)

which is derived by using the series expansion procedure.

Lemma 2. The hypergeometric polynomials as particular solutions of (2) have a
representation of the so-called Rodrigues formula:

F (α,β)
n (x) = an(α, β)

xα(1 − ωx)β

(
d

dx

)n

(xα+n(1 − ωx)β+n) (6)

where an(α, β) are the normalization coefficients.

Proof. See [12]. �

It is easily seen that the coefficient of the highest power of x, xn, for F
(α,β)
n (x) is

F (α,β)
n (x) = an(α, β)(−ω)n

�(α + β + 2n + 1)

�(α + β + n + 1)
xn + O(xn−1). (7)

Comparing with (5), for the parameters given as (4), we find that

F (α,β)
n (x) = �(α + n + 1)an(α, β)

�(α + 1)�(n + 1)
2F1(−n, α + β + n + 1;α + 1;ωx). (8)

Lemma 3. We have∫ 1
ω

0
F (α,β)

n (x)F
(α,β)

n′ (x)xα(1 − ωx)β dx = δnn′h2
n(α, β) (9)

where

h2
n(α, β) = a2

n(α, β)

ωα+1

�(n + 1)�(α + n + 1)�(β + n + 1)

(α + β + 2n + 1)�(α + β + n + 1)
. (10)

Proof. This follows immediately from integration by parts. �

Now, we are going to introduce the associated hypergeometric functions with a Rodrigues
representation labelled by two non-negative integers.
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Lemma 4. We have the following associated hypergeometric differential equation:

x(1 − ωx)F ′′(α,β)
n,m (x) + [α + 1 − (α + β + 2)ωx]F ′(α,β)

n,m (x)

+

[
nω(α + β + n + 1) +

m[2(α − β)ωx − (2α + m)]

4x(1 − ωx)

]
F (α,β)

n,m (x) = 0

0 � m � n (11)

with the solutions as

F (α,β)
n,m (x) = an,m(α, β)

xα+ m
2 (1 − ωx)β+ m

2

(
d

dx

)n−m

(xα+n(1 − ωx)β+n) (12)

where the real constant an,m(α, β) is the normalization coefficient of the associated
hypergeometric function F

(α,β)
n,m (x).

Proof. By differentiating the hypergeometric polynomials differential equation (2) m times
we get a new differential equation similar to (2), but with new parameters α + m, β + m and
n−m instead of α, β and n, respectively. Thus for the obtained differential equation, we have
a polynomial solution of degree n − m as F

(α+m,β+m)
n−m (x). Then it is trivial to show that the

associated hypergeometric functions

F (α,β)
n,m (x) = an,m(α, β)

an−m(α + m,β + m)
x

m
2 (1 − ωx)

m
2 F

(α+m,β+m)
n−m (x) (13)

satisfy the differential equation (11). �

Obviously by choosing m = 0, the associated hypergeometric functions differential
equation (11) converts to the differential equation corresponding to the hypergeometric
polynomials given in relation (2).

Lemma 5. We have∫ 1
ω

0
F (α,β)

n,m (x)F
(α,β)

n′,m (x)xα(1 − ωx)β dx = δnn′h2
n,m(α, β) n, n′ � m (14)

where

h2
n,m(α, β) = a2

n,m(α, β)

ωα+m+1

�(n − m + 1)�(α + n + 1)�(β + n + 1)

(α + β + 2n + 1)�(α + β + n + m + 1)
. (15)

Proof. The proof follows by using lemma 3 and formula (13). �

Lemma 5 implies that the associated hypergeometric functions with different n, for a given
m, form an orthogonal set with respect to an inner product with the weight function
xα(1 − ωx)β in the interval x ∈ (

0, 1
ω

)
. Evidently, equation (14) also expresses that the

norms of the associated hypergeometric functions, hn,m(α, β), are determined by specifying
the normalization coefficients an,m(α, β). Satisfaction of the raising and lowering relations
obtained from the shape invariance with respect to the parameters n and m will determine the
normalization coefficients an,m(α, β).

According to the discussions in [14, 15, 31], the shape invariance with respect to
one parameter leads to not only a representation of the supersymmetry algebra but also a
representation of the parasupersymmetry algebra of arbitrary order. It is worth emphasizing
that the simultaneous shape invariance with respect to more than one parameter also leads to
a representation of the (para)supersymmetry algebra. Preferably, the mentioned discussions
should be followed in the context of the quantum mechanical problems. Thus, in what follows,
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we explain shape invariance with respect to two parameters n and m, separately, only from the
mathematical point of view.

Theorem 1. The associated hypergeometric functions differential equation (11) is factorized
into a product of first-order differential operators as (a) shape invariance equations (of the
first type) with respect to n, i.e. as equations (n,m) and (n − 1,m),

A+(n,m; x)A−(n,m; x)F (α,β)
n,m (x) = E(n,m)F (α,β)

n,m (x)
(16)

A−(n,m; x)A+(n,m; x)F
(α,β)

n−1,m(x) = E(n,m)F
(α,β)

n−1,m(x)

with

A+(n,m; x) = x(1 − ωx)
d

dx
− (α + β + n)ωx +

1

2
(2α + n) − (n − m)(α − β)

2(α + β + 2n)
(17)

A−(n,m; x) = −x(1 − ωx)
d

dx
− nωx +

n

2
− (n − m)(α − β)

2(α + β + 2n)

E(n,m) = (n − m)(α + n)(β + n)(α + β + n + m)

(α + β + 2n)2
(18)

(b) shape invariance equations (of second type) with respect to m, i.e. as equations (n,m) and
(n,m − 1),

A+(m; x)A−(m; x)F (α,β)
n,m (x) = E(n,m)F (α,β)

n,m (x)
(19)

A−(m; x)A+(m; x)F
(α,β)

n,m−1(x) = E(n,m)F
(α,β)

n,m−1(x)

with

A+(m; x) =
√

x(1 − ωx)
d

dx
+

(m − 1)(2ωx − 1)

2
√

x(1 − ωx)
(20)

A−(m; x) = −
√

x(1 − ωx)
d

dx
+

2(α + β + m)ωx − 2α − m

2
√

x(1 − ωx)

E(n,m) = (n − m + 1)(α + β + n + m)ω. (21)

Proof. The proof of the factorizations (16) and (19) can be derived by means of a direct
substitution of the explicit forms of A±(n,m; x), E(n,m),A±(m; x) and E(n,m). In other
words, one can easily verify that each of the relations given in (16) and (19) is a copy of the
associated hypergeometric differential equation (11). The technical proofs of the first and
second types of the factorizations can be found in [31] and [15, 16], respectively. �

It is also seen that the operators A+(m; x) and A−(m; x) (A+(n,m; x) and A−(n,m; x))
are (not) the Hermitian conjugates of each other with respect to the inner product (14).

3. Simultaneous realization of laddering equations with respect to n and m

Now regarding the shape invariance equations (16) and (19) we can obtain the raising and
lowering relations of the indices n and m of the associated hypergeometric functions F

(α,β)
n,m (x).

It is clear that realization of equations (16) and (19) does not impose any condition on the
normalization coefficients an,m(α, β). However, realization of the laddering equations with
respect to n and m imposes two recursion relations with respect to n and m, respectively, on the
coefficients.
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Theorem 2. For a given m, the raising and lowering relations of the index n,

A+(n,m; x)F
(α,β)

n−1,m(x) =
√

E(n,m)F (α,β)
n,m (x) (22a)

A−(n,m; x)F (α,β)
n,m (x) =

√
E(n,m)F

(α,β)

n−1,m(x) (22b)

and for a given n, the raising and lowering relations of the index m,

A+(m; x)F
(α,β)

n,m−1(x) =
√
E(n,m)F (α,β)

n,m (x) (23a)

A−(m; x)F (α,β)
n,m (x) =

√
E(n,m)F

(α,β)

n,m−1(x) (23b)

are simultaneously established if the normalization coefficient an,m(α, β) is chosen as

an,m(α, β) = (−1)mω
m
2

√
�(α + β + n + m + 1)

�(n − m + 1)�(α + n + 1)�(β + n + 1)
C(α, β)

0 � m � n < ∞ (24)

in which C(α, β) is an arbitrary real constant independent of n and m.

Proof. Applying equation (13) in equation (22a) and dividing both sides by the factor
x

m
2 (1 − ωx)

m
2 then, by means of comparing the coefficients of the highest power of x, xn−m,

one may obtain

an,m(α, β) =
√

α + β + n + m

(n − m)(α + n)(β + n)
an−1,m(α, β) n > m. (25)

If we follow a similar procedure in connection with equation (22b) and compare the coefficients
of the highest power of x, xn−m+1, on both sides then we will obtain a relation which is just an
identity. Repeated application of the recursion relation (25) for a given m leads to

an,m(α, β) =
√

�(α + β + n + m + 1)�(α + m + 1)�(β + m + 1)

�(n − m + 1)�(α + n + 1)�(β + n + 1)�(α + β + 2m + 1)
am,m(α, β)

n � m. (26)

Also, using equation (13) in equation (23a) and dividing both sides by the factor x
m
2 (1−ωx)

m
2

then, by comparing the coefficients of the highest power of x, xn−m, the following recursion
relation is obtained:

an,m(α, β) = − an,m+1(α, β)√
(n − m)(α + β + n + m + 1)ω

m � n − 1. (27)

If we follow the same procedure for equation (23b) then we have to divide both sides by
x

m−1
2 (1 − ωx)

m−1
2 and compare the coefficients of xn−m+1 on both sides. Finally, we will get

the recursion relation (27) again. Relation (27), for a given n, immediately gives

an,m(α, β) =
(

− 1√
ω

)n−m
√

�(α + β + n + m + 1)

�(n − m + 1)�(α + β + 2n + 1)
an,n(α, β) m � n. (28)

In fact, equations (26) and (28) are two different constraints on the normalization coefficients
of the associated hypergeometric functions which have two free indices. Clearly, by comparing
them, it appears that

an,n(α, β) = (−1)nω
n
2

√
�(α + β + 2n + 1)

�(α + n + 1)�(β + n + 1)
C(α, β) n = 0, 1, 2, . . . . (29)
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Note that equation (29) is also valid when n = m. Thus, using equations (26) and (28) we can
get the same expression (24) for the normalization coefficients. �

For a given m, the laddering relations (22) are infinite since m � n < ∞, while for a given
n, the laddering relations (23) are finite since 0 � m � n. In deriving relation (24) we have
not used any data involved in equation (22b). However, one can verify relation (22b) by
applying (24) to it. Similar discussions can be carried out for the associated Jacobi functions3.
Now, we follow the discussion from another point of view. In other words, after determining
the normalization coefficients as relation (24), we investigate the norm of the associated
hypergeometric functions.

Corollary 1. For a given n and m, the norm of the associated hypergeometric functions
F

(α,β)
n,m (x) is independent of m, and its square is

h2
n,m(α, β) = C2(α, β)

ωα+1(α + β + 2n + 1)
. (30)

Proof. It follows immediately by substituting equation (24) into (15). �

Each of the laddering equations (22) and (23) separately proposes an algebraic solution for
deriving the associated hypergeometric functions.

3 If we define a second-order linear differential operator, for given real parameters α, β > −1 and ω > 0, in the
interval z ∈ ( −1

ω
, 1

ω
) as

L(α,β)(z) := (1 − ωz)−α(1 + ωz)−β d

dz

(
(1 − ωz)α+1(1 + ωz)β+1 d

dz

)

then we can obtain the differential equation corresponding to the associated Jacobi functions P
(α,β)
n,m (z) (of

hypergeometric type) as follows:

(1 − ω2z2)P ′′(α,β)
n,m (z) − ω[α − β + ω(α + β + 2)z]P ′(α,β)

n,m (z)

+ ω2
[
n(α + β + n + 1) − m(α + β + m + (α − β)ωz)

1 − ω2z2

]
P (α,β)

n,m (z) = 0.

Note that in this footnote, the prime symbol indicates differentiation with respect to z. The associated Jacobi functions
P

(α,β)
n,m (z) as the solutions of the above differential equation have the following Rodrigues representation:

P (α,β)
n,m (z) = bn,m(α, β)

(1 − ωz)α+ m
2 (1 + ωz)β+ m

2

(
d

dz

)n−m

((1 − ωz)α+n(1 + ωz)β+n)

in which bn,m(α, β) are the normalization coefficients. Clearly by using the change of variable ωx = 1−ωz
2 , the

interval z ∈ (− 1
ω
, 1

ω
) converts to the interval x ∈ (0, 1

ω
), and the associated Jacobi differential equation reduces to

(11). This leads, in turn, to

P (α,β)
n,m (z) ∝ F (α,β)

n,m (x).

Comparing equation (12) with the Rodrigues formula for P
(α,β)
n,m (z), the above proportionality converts to the following

equation:

P (α,β)
n,m (z) = (−1)n−m2nωn− m

2
bn,m(α, β)

an,m(α, β)
F (α,β)

n,m (x).

If we perform the factorization with respect to n and m separately and simultaneously, then similar to the associated
hypergeometric functions we get the following result for the associated Jacobi functions:

bn,m(α, β) =
(−1

2

)n (−1

ω

)n−m
√

�(α + β + n + m + 1)

�(n − m + 1)�(α + n + 1)�(β + n + 1)
C(α, β) 0 � m � n < ∞.

Thus, using the formalism introduced in this paper, one can follow the discussions for the associated Jacobi functions
instead of the associated hypergeometric functions.
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Corollary 2. We have the following algebraic solutions for the associated hypergeometric
differential equation (11):

F (α,β)
n,m (x) = A+(n,m; x)A+(n − 1,m; x) · · · A+(m + 1,m; x)F

(α,β)
m,m (x)√

E(n,m)E(n − 1,m) · · · E(m + 1,m)
n � m + 1

(31)

F (α,β)
n,m (x) = A−(m + 1; x)A−(m + 2; x) · · · A−(n; x)F

(α,β)
n,n (x)√

E(n,m + 1)E(n,m + 2) · · · E(n, n)
m � n − 1 (32)

where

F (α,β)
m,m (x) = am,m(α, β)x

m
2 (1 − ωx)

m
2 . (33)

Proof. To present the proof of the corollary, it is sufficient to consider equations E(m,m) =
E(n, n + 1) = 0 and then obtain the following first-order differential equations from (22b) and
(23a):

A−(m,m; x)F (α,β)
m,m (x) = 0 (34)

A+(n + 1; x)F (α,β)
n,n (x) = 0. (35)

The solution of the first-order differential equation (34) is (33), and the solution of (35) is
(33) if m is replaced by n. For a given m and n, by repeated application of the raising
and lowering relations (22a) and (23b), one may get the arbitrary associated hypergeometric
function F

(α,β)
n,m (x) as equations (31) and (32), respectively. �

Note that the algebraic solution (33) is in agreement with the analytic solution (12). The
laddering equations (22) and (23) corresponding to the parameters n and m, respectively, show
that there are two pairs of recursion relations of first and second types on three associated
hypergeometric functions.

Corollary 3. There exist the following two independent recursion relations (of first type) on
the index n for the associated hypergeometric functions[

−(α + β + 2n + 1)ωx +
2α + 2n + 1

2
− (n − m)(α − β)

2(α + β + 2n)
− (n − m + 1)(α − β)

2(α + β + 2n + 2)

]
F (α,β)

n,m (x)

=
√

E(n,m)F
(α,β)

n−1,m(x) +
√

E(n + 1,m)F
(α,β)

n+1,m(x)[
2x(1 − ωx)

d

dx
− (α + β + 1)ωx +

2α + 1

2
+

(n − m)(α − β)

2(α + β + 2n)
(36)

− (n − m + 1)(α − β)

2(α + β + 2n + 2)

]
F (α,β)

n,m (x)

=
√

E(n + 1,m)F
(α,β)

n+1,m(x) −
√

E(n,m)F
(α,β)

n−1,m(x).

Proof. In order to derive these recursion relations it is sufficient to change n to n + 1 in
equation (22a); then the obtained result must be added to and subtracted from (22b). �

Corollary 4. There are the following two independent recursion relations (of second type) on
the index m for the associated hypergeometric functions
(α + β + 2m)ωx − α − m√

x(1 − ωx)
F (α,β)

n,m (x) =
√
E(n,m)F

(α,β)

n,m−1(x) +
√
E(n,m + 1)F

(α,β)

n,m+1(x)[
2
√

x(1 − ωx)
d

dx
− (α + β)ωx − α√

x(1 − ωx)

]
F (α,β)

n,m (x) (37)

=
√
E(n,m + 1)F

(α,β)

n,m+1(x) −
√
E(n,m)F

(α,β)

n,m−1(x).
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Proof. The proof is quite similar to the proof of corollary 3. �

4. Shape invariance and laddering equations with respect to n and m simultaneously

The laddering equations (22) and (23), which shift n and m separately, lead to the derivation
of two types of new factorizations for the associated hypergeometric differential equation (11)
so that, on that basis, shape invariance equations may be written for the indices (n,m− 1) and
(n − 1,m) as well as (n,m) and (n − 1,m − 1). Each of these shape invariances is realized
by a pair of the first-order differential operators whose corresponding laddering equations
shift both of the indices n and m, simultaneously and inversely as well as simultaneously and
agreeably, respectively.

Theorem 3. Let us define two new differential operators as

A+,−(n,m; x) := A−(m; x)A+(n,m; x) − A+(n,m − 1; x)A−(m; x)
(38)

A−,+(n,m; x) := A−(n,m; x)A+(m; x) − A+(m; x)A−(n,m − 1; x).

(a) They satisfy the raising and lowering relations with respect to n and m, simultaneously as

A+,−(n,m; x)F
(α,β)

n−1,m(x) =
√

ω(n − m + 1)E(n,m)

α + β + n + m
F

(α,β)

n,m−1(x) (39a)

A−,+(n,m; x)F
(α,β)

n,m−1(x) =
√

ω(n − m + 1)E(n,m)

α + β + n + m
F

(α,β)

n−1,m(x). (39b)

So, the operator A+,−(n,m; x) increases n and decreases m however, the operator
A−,+(n,m; x) decreases n and increases m.

(b) They satisfy shape invariance equations (of third type) with respect to the indices n and
m as equations (n,m − 1) and (n − 1,m):

A+,−(n,m; x)A−,+(n,m; x)F
(α,β)

n,m−1(x) = ω(n − m + 1)E(n,m)

α + β + n + m
F

(α,β)

n,m−1(x)

(40)
A−,+(n,m; x)A+,−(n,m; x)F

(α,β)

n−1,m(x) = ω(n − m + 1)E(n,m)

α + β + n + m
F

(α,β)

n−1,m(x).

(c) They have the following explicit forms as the first-order differential operators

A+,−(n,m; x) = 1

2

[
β − α

α + β + 2n
− (1 − 2ωx)

] √
x(1 − ωx)

d

dx
+ (n − m)ω

√
x(1 − ωx)

+
1

4

[
β − α

α + β + 2n
− (1 − 2ωx)

] −2(α + β + m)ωx + 2α + m√
x(1 − ωx)

A−,+(n,m; x) = −1

2

[
β − α

α + β + 2n
− (1 − 2ωx)

]
(41)

×
√

x(1 − ωx)
d

dx
+ (n − m + 1)ω

√
x(1 − ωx)

+
1

4

[
β − α

α + β + 2n
− (1 − 2ωx)

]
(m − 1)(1 − 2ωx)√

x(1 − ωx)
.

Proof. In order to prove the laddering relations (39), it is sufficient to use the laddering
relations (22) and (23) in the definitions (38). The proof of the shape invariance equations (40)
is trivial by direct substitution of the laddering relations (39) into them. The explicit differential
forms of the operators A±,∓(n,m; x) are also calculated by equations (17) and (20). �
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Corollary 5. There are two independent recursion relations (of third type) among three
associated hypergeometric functions as[

(α − β)

(α + β + 2n)(α + β + 2n + 2)

√
x(1 − ωx)

d

dx
+ (2n − 2m + 1)ω

√
x(1 − ωx)

+
1

4

[
β − α

α + β + 2n + 2
− (1 − 2ωx)

] −2(α + β + m)ωx + m + 2α√
x(1 − ωx)

+
1

4

[
β − α

α + β + 2n
− (1 − 2ωx)

]
m(1 − 2ωx)√

x(1 − ωx)

]
F (α,β)

n,m (x)

=
√

ω(n − m + 2)E(n + 1,m)

α + β + n + m + 1
F

(α,β)

n+1,m−1(x)

+

√
ω(n − m)E(n,m + 1)

α + β + n + m + 1
F

(α,β)

n−1,m+1(x)

(42)[(
(β − α)(α + β + 2n + 1)

(α + β + 2n)(α + β + 2n + 2)
− (1 − 2ωx)

) √
x(1 − ωx)

d

dx
+ ω

√
x(1 − ωx)

+
1

4

[
β − α

α + β + 2n + 2
− (1 − 2ωx)

] −2(α + β + m)ωx + 2α + m√
x(1 − ωx)

− 1

4

[
β − α

α + β + 2n
− (1 − 2ωx)

]
m(1 − 2ωx)√

x(1 − ωx)

]
F (α,β)

n,m (x)

=
√

ω(n − m + 2)E(n + 1,m)

α + β + n + m + 1
F

(α,β)

n+1,m−1(x)

−
√

ω(n − m)E(n,m + 1)

α + β + n + m + 1
F

(α,β)

n−1,m+1(x).

Proof. To prove this corollary one may change n and m to n + 1 and m + 1 in equations (39a)
and (39b), respectively, and then the obtained results should be added to and subtracted from
each other. �

Theorem 4. Let us define two new differential operators as

A+,+(n,m; x) := A+(m; x)A+(n,m − 1; x) − A+(n,m; x)A+(m; x)
(43)

A−,−(n,m; x) := A−(n,m − 1; x)A−(m; x) − A−(m; x)A−(n,m; x).

(a) They satisfy the raising and lowering relations with respect to n and m, simultaneously as

A+,+(n,m; x)F
(α,β)

n−1,m−1(x) =
√

ω(α + β + n + m − 1)E(n,m)

n − m
F(α,β)

n,m (x) (44a)

A−,−(n,m; x)F (α,β)
n,m (x) =

√
ω(α + β + n + m − 1)E(n,m)

n − m
F

(α,β)

n−1,m−1(x). (44b)

Hence, the operator A+,+(n,m; x) increases both of the indices n and m, however, the
operator A−,−(n,m; x) decreases both of them.

(b) They satisfy shape invariance equations (of fourth type) with respect to the indices n and
m as equations (n,m) and (n − 1,m − 1):
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A+,+(n,m; x)A−,−(n,m; x)F (α,β)
n,m (x) = ω(α + β + n + m − 1)E(n,m)

n − m
F(α,β)

n,m (x)

A−,−(n,m; x)A+,+(n,m; x)F
(α,β)

n−1,m−1(x) = ω(α + β + n + m − 1)E(n,m)

n − m
F

(α,β)

n−1,m−1(x).

(45)

(c) They have the following explicit forms as the first-order differential operators:

A+,+(n,m; x) = 1

2

[
β − α

α + β + 2n
+ (1 − 2ωx)

] √
x(1 − ωx)

d

dx

− (α + β + n + m − 1)ω
√

x(1 − ωx)

− 1

4

[
β − α

α + β + 2n
+ (1 − 2ωx)

]
(m − 1)(1 − 2ωx)√

x(1 − ωx)
(46)

A−,−(n,m; x) = −1

2

[
β − α

α + β + 2n
+ (1 − 2ωx)

] √
x(1 − ωx)

d

dx

− (α + β + n + m)ω
√

x(1 − ωx)

− 1

4

[
β − α

α + β + 2n
+ (1 − 2ωx)

] −2(α + β + m)ωx + 2α + m√
x(1 − ωx)

.

Proof. In the same way as presented in the proof of theorem 3, one can deduce the relations
(44), (45) and (46). �

It is noted that equations (44) and (45) have no singular point when n = m. Similar to the shape
invariance equations (16) and (19), one may check that each of the equations given in (40)
and (45) can be converted to the differential equation (11) for the associated hypergeometric
functions by some manipulations. In fact, the relations (16), (19), (40) and (45) as shape
invariance equations are different types of the factorizations for (11). In figure 1, we have
schematically shown all the associated hypergeometric functions F

(α,β)
n,m (x) as points (n,m)

with 0 � m � n < ∞ in the flat plane with n and m as the horizontal and vertical axes,
respectively. The ladder operators A±(m; x),A±(n,m; x),A±,±(n,m; x) and A±,∓(n,m; x)

displace the associated hypergeometric functions lain on the vertical and horizontal lines, as
well as the lines parallel to the bisectors of the first and fourth quadrants, respectively.

Corollary 6. There exist two independent recursion relations (of fourth type) among three
associated hypergeometric functions as[

(α − β)

(α + β + 2n)(α + β + 2n + 2)

√
x(1 − ωx)

d

dx
− (2α + 2β + 2n + 2m + 1)ω

√
x(1 − ωx)

− 1

4

[
β − α

α + β + 2n
+ (1 − 2ωx)

] −2(α + β + m)ωx + 2α + m√
x(1 − ωx)

− 1

4

[
β − α

α + β + 2n + 2
+ (1 − 2ωx)

]
m(1 − 2ωx)√

x(1 − ωx)

]
F (α,β)

n,m (x)

=
√

ω(α + β + n + m + 1)E(n + 1,m + 1)

n − m
F

(α,β)

n+1,m+1(x)

+

√
ω(α + β + n + m − 1)E(n,m)

n − m
F

(α,β)

n−1,m−1(x)
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Figure 1. The plane of displacements of the associated hypergeometric functions in four different ways by the ladder operators shifting only n, shifting only m, shifting indices n and m
simultaneously and inversely and shifting indices n and m simultaneously and agreeably.
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[(
(β − α)(α + β + 2n + 1)

(α + β + 2n)(α + β + 2n + 2)
+ (1 − 2ωx)

) √
x(1 − ωx)

d

dx
− ω

√
x(1 − ωx)

+
1

4

[
β − α

α + β + 2n
+ (1 − 2ωx)

] −2(α + β + m)ωx + 2α + m√
x(1 − ωx)

− 1

4

[
β − α

α + β + 2n + 2
+ (1 − 2ωx)

]
m(1 − 2ωx)√

x(1 − ωx)

]
F (α,β)

n,m (x)

=
√

ω(α + β + n + m + 1)E(n + 1,m + 1)

n − m
F

(α,β)

n+1,m+1(x)

−
√

ω(α + β + n + m − 1)E(n,m)

n − m
F

(α,β)

n−1,m−1(x).

(47)

Proof. In order to prove this corollary it is sufficient to increase each of the indices n and m
by one unit in equation (44a), then the obtained result must be added to and subtracted from
equation (44b). �

Note that two pairs of recursion relations obtained in the relations (42) and (47) are different
from (36) and (37). In fact, both of the recursion relations (42) and (47) involve the derivative
of the associated hypergeometric functions, however, the first recursion relations of (36) and
(37) do not have the terms involving the derivative of associated hypergeometric functions.
Obviously, the results of theorems 3 and 4 take simple forms when α = β. It is also
clear that the discussions of this paper can be followed for the other associated special
functions, for example the associated Jacobi functions, which are transformed to the associated
hypergeometric functions by well-known methods. However, quantum states of some of the
1D solvable models such as the trigonometric Pöschl–Teller, Natanzon and trigonometric
Scarf are calculated by using the hypergeometric-type differential equation in terms of the
associated hypergeometric functions. One can apply realization of the simultaneous laddering
relations with respect to more than one parameter by the quantum states and show that they
represent supersymmetry algebra with higher N . This is a problem that one may study.
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